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THE MECHANISM OF BOILING 

V. F. Stepanchuk and M. L. Guris UDC 621.1.016.4 

Models of bubble boiling and crisis boiling are considered, which are developed on the 
basis of the classical theory of boiling and the theory of polymolecular absorption films, 

Since the vapors of polar liquids on a solid surface form extremely thick adsorption 
layers and vapor nuclei, which appear on the solid surface as a result of density fluctua- 
tions, a liquid microfilm is separated on it. The pressure of the vapor in the nuclei be- 
comes equalized, on the one hand, by the capillary pressure on the spherical surface AP = 
2o/R and, on the other hand, by the disjoining pressure of the microlayer AP = P(h) = --~m/~h, 
where m is the free energy of the layer. 

The thickness of the film must obviously be the same over the whole base of the bubble, 

An analysis of the metastable system which ensures that a critical nucleus is produced 
enables one to determine the relation between the temperature of overheating of the generat- 
ing layer, its thickness, and the dimensions of the bubble. As the bubble increases the va- 
por pressure in it rises and the thickness of the adsorbed film in equilibrium with it in- 
creases. 

The bubble of vapor during the separation period has a somewhat greater radius than the 
capillary pressure on its surface and the disjoining pressure of the microlayer is negligibly 
small. 

Fusion of these bubbles and of bubbles of greater size with the formation of even entire 
vapor cavities does not disturb the equil~brlum of the system. 

We now consider a bubble of vapor which does not reach the breakaway size and is in equi- 
librium with its adsorption film. When two or more of such bubbles merge a new bubble is ob- 
tained, the pressure of which is much less than the initial value, 

The film is overheated with respect to the new pressure and evaporates, The equilibrium 
of the system is disturbed, and the reduction in pressure is accompanied by a thinning of the 
film, i.e., 8P/Sh > 0, which is a characteristic of the lability of the film. The 8-film 
Bursts open, changing the stable e-modification. 

Consequently, the mechanism of bubble boiling and the boiling crisis can be explained 
on the basis of the common behavior of the instability of liquid microlayers, 
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A METHOD OF SIMULATING THE TURBULENT MOTIONS OF A VISCOUS 

INCOMPRESSIBLE LIQUID 

F. N. Yasinskii and S. G. Ushakov UDC 532.526.4 

To simulate plane stationary flows of a viscous incompressible liquid, a system is pro- 
posed based on the following assumptions. 

i. The motion of the medium is described by nonstationary Reynold's equations. 

2. The stress tensor is a linear function of the rate of deformation tensor. The phe- 
nomenological turbulent viscosity is added to the molecular viscosity. 
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3. The distribution of the turbulent viscosity in space is described by the differen- 
tial equation [i] 

=-- ~ us --+ (W + as + 
o~ s=l OXs = 
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Here E and W are the turbulent and molecular viscosities; 3, time; Xs, coordinates; Us, veloc- 
ity components; and u, b, and Z, empirical constants. 

4. The continuity equation is replaced by the artificial equation 

2 
ap _ c 2 ~ au__~_~ 

k= ! axk ' 

where p is the pressure and c 2 is a constant. 

When the field becomes stationary this equation reduces to the usual continuity equa- 
tion. By applying the build-up method and an explicit difference scheme to this system, we 
obtain a simple and comparatively rapid algorithm for searching for stationary turbulent 
fields. Numerical experiments showed that the accuracy is sufficient for practical applica- 
tions. 

An explicit difference scheme was used. The flow of air in industrial rooms was studied. 
The computational process was begun with a certain extremely arbitrary velocity field and was 
completed when the field practically ceased changing. 

. 

flows in the presence of volume forces and nonautosimulation, 
Russian], Nauka, Moscow (1974). 
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SOLUTION OF NONIDEAL CONTACT PROBLEMS OF NONSTATIONARY HEAT 

CONDUCTION 

I. A. Zhvanlya and A. V. Kazakov UDC 536.2 

The one-dimensional problem of nonstationary heat conduction is studied when there are 
nonideal thermal contacts between the neighboring layers. The conjugation conditions take 
into account the reduced heat capacity and thermal resistance of the contact [i]. The solu- 
tion is obtained by Datsev's method [2]. To determine the temperatures of the contacting 
surfaces, a system of Volterra integral equations of the second kind is obtained. 

For a double-layer system, accurate solutions are obtained using the Laplace integral 
transform. The problem of the heat exchange between two semibounded bodies is analyzed as 
a special case. A table of the roots of the characteristic equations as a function of the 
nonidealness is given. 

i. 
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DETERMINATION OF THE EFFECTIVE DRYING MODES OF LIGHT MALT 

USING MATHEMATICAL SIMULATION 

A. N. Kashurln, V. A. Domaretskli, 
and A. S. Zelepuga 

UDC 66.047.7.001.57 

The process of convective drying of granular material, (e.g., light malt) is described 
by the following set of differential equations: 

Q f-~-y + , ~ - - -  o -  ~)Po" a~Vga~ = 0, 

Oug = _ k (ug - -  ugsL 

aT aT OT aw 
onQ--~y : -  ePhC h ~ --' Cgpg (1 - -  s) ~ - -  - -  r (1 - -  e) Pg ~ = 0. 

(1) 

(2) 

(3) 

where Q is the flow rate of the heat carrier, kg/sec.ma; Uh, Ug, and Ugs, moisture content 

of the heat carrier, the average grain of malt, and the surface of a grain, respectively, kg 
moisture/kg dried material; W, average moisture content of a grain of malt per total weight, 
%; c h and Cg, heat capacity of the heat carrier and a grain, J/kg.deg; T, temperature of the 

heat carrier, =K; T, time, sec; r, heat of vaporization, J/kg; e, porosity; y, a coordinate 
(the height of the layer), m; and k, drying factor, sec-*, For the boundary conditions we 
have T(r, 0) = f(~), Uh(T, 0) = ~, r(0, y) = To, Wg(0, y) = Wo, UT(0, y), and on the basis 

of the experimental empirical relations 

k = k o (i - -  q~) exp [rn (T - -  T,) ], Ug s = [u~ - -  b (T - -  Tx) ] % 

where ~ is the relative moisture content of the heat carrier, the set of equations (1)-(3) 
was solved numerically on the Minsk-32 computer. The purpose of the solution was to obtain 
the minimum flow rate of the heat carrier x, which occurs in the drying agent flow equation 

i" a~  (u, T) Q=xpg(l--e) , Ov dy+Qo, , s t a r t i n g  f r o m  t h e  c o n d i t i o n s  f o r  t h e  o p t i m u m  e l e c t r i c a l  e n e r g y  c o s t ,  
'6 

e x p e n d e d  o n  b l o w i n g  t h e  l a y e r  o f  m a t e r i a l  w i t h  t h e  h e a t  c a r r i e r ,  t h e  h e a t  f o r  h e a t i n g  t h e  l a t -  
t e r ,  a n d  t h e  p a y m e n t  f o r  t h e  w o r k i n g  t i m e .  

TABLE i. Results of the Numerical Solution of the Problem 

Themmtical I Time, h 
quantit2es / 0 1 2 3 4 5 6 7 8 I 9 

u•/upper �9 l~wet 
upper 

T, 16wer 
Yc, m 
Q, kg / sec ,  m z 

Ee-(r). kW. h 
Eq(r), kI'h 

' 0 754 
10,754 0,71 

, 0,62 
303,0 1 303,7 

[ 312,4 1 319.9 
1,0 0,96 

0,96 0,98 

]o ~ o, 8 
0,25 

0,67 
0,51 
305,4 
315,0 
0,93 

1,04 

0,51{] 
0,49 

0,63 
0,41 
307,5 
317,1 
0,88 

1,10 

3,905 
I,O1 

0,56 
0,30 
310,0 
319,6 
0,82 

1,17 

1,58 
1,29 

0,48 
0,22 
314,0 
322,0 
0,78 

1,23 

2,47 
1,84 

0,382 
0.135 
318 ,C 
325 ,{] 
0,72 

1,21 

3,91 
2,66 

0,28 
9,076 
324,0 
328,8 
0,66 

1,16 

5,43 
3,54 

0,778 
0,037 
328,2 
332,7 
0,62 

0,89 

6,86 
4,57 

0,084 
0,014 
332,0 
335,7 
0,59 

0,34 

7,4 
5,29 
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We introduced limitations on the drying cycle time with respect to the initial tempera- 
ture and the final relative moisture content of the drying agent on the basis of preliminary 
experiments. 

As a result of calculations, by choosing values of the coefficient x we obtained x = 
opt 

= 172 kg heat carrier/kg moisture, and the corresponding temperature and moisture content of 
the layer of malt on the boundaries, the height of the layer, the operating parameters, and 
the energy cost in the process as a function of time (see Table I). 
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A GENERAL HEAT-CONDUCTION INTEGRODIFFERENTIAL EQUATION FOR SOLIDS 

V. A. Makagonov UDC 536.2 

The thermal conditions of bodies when highly intense nonstationary processes are occur- 
ring is often calculated using a hyperbolic heat-conduction equation which is a special case 
of the integrodifferentlal heat-conductlon equation [I]. 

However, in [i] when obtaining the integrodifferential equation, the fact that in bodies, 
together with an external highly intense action, there may also be internal additional heat 
dissipation connected either with chemical reactions or the absorptions of penetrating radi- 
ation, or due to other physical processes, was ignored. 

In the present paper, in addition to [i] these phenomena are taken into account, and a 
general integrodifferential equation is obtained from which the hyperbolic and parabolic heat 
transfer equations are obtained as a special case taking into account and ignoring the inter- 
nal sources. 

When obtaining the equation it was assumed that the heat-transfer mechanism occurs by 
means of carriers emitted by some particles and absorbed by others. The body is considered 
to be isotropic consisting of particles of spherical shape. The structure of the body is 
assumed to be polydisperse. The equation is derived by considering the heat balance of the 
body. The final result is presented for the case of the one-dimensional problem in a rec- 
tangular system of coordinates. 
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DEVELOPMENT OF A MATHEMATICAL MODEL OF HEAT EXCHANGE IN A FLAME 

THERMAL OVEN 

Yu. V. Neverov and S. A. Podosenov UDC 536.245 

To determine the effect of the constructional parameters of the oven and the choice of 
the form of controlling actions ensuring a specified heating uniformity and accuracy, an ap- 
proximate method is proposed for calculating the heat exchange in the channel formed by the 
stacked and heated article. 
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It is shown that in the extraction (stationary) mode, in view of the irreversible therm- 
al losses through the stack, it is impossible in principle to achieve uniformity of the heat- 
ing of the metal along the motion of the heat carrier, although it is often assumed that in 
thermal ovens an unlimited increase in the extraction time should lead to equalization of the 
temperature of the heated article. The analytical expression for the temperature fields is 
given by the following equations: In the gas flow 

T (x) = T$ -i- ( ro  .+ r$ ) exp - -  - ~  K l-,'.---~'---1)--~--x , 

K Lv~ ,5 ~L~" I 

x xH ( t +  ~__~_ . H~x h % + --s 

the temperature distribution in the metal 

A o 2 T ( x ) +  A , 2 V , ( x )  
U ( x ) =  

Ao2+ AI~ 

In the steady-state heat-exchange mode where we take as the initial state the steady-state 
temperature distribution, the temperature field in the metal is given by the following rela- 
tion: 

l 1 
W(X, x ) =  ~ ~,(X) exp( - -p - ,x ) - -~o l (O)exp(a - \ - -p - , z )  

x 

I 
Jo (]/4c* (X --  ~) X) .-~- exp (aX)  f1 ('t) +--if- exp (aX  - -  p,g) • 

o 
t" [ " '/-c1TJI.,_..~,(VcI[('I~--2X--~)'--'cz]) 

t 

--2X 
(__ ~ a --~)exp(--~--.~ ) ]d~- -exp(aX--p- ,  x ) •  qh 
\ 

'r--X 
/-~-~t X Jr (Vc-~-|' (x -- 2X -- [)z _ ('r -- [)2 ) exp (p, [) [, (~) 

d~, X 
V (x - -  2X - -  [ ) ~  - -  ( '~ - -  [ ) ~  6 ~ 

where W = U-- Ts; f(T) = W(0, ~); ~ ,(X) = W(X, 0); JoJx is the Bessel function; T = vot/L; 
X = x/L. 

! 

L (Ao.. - -  AI~) L~AI~ h,  ~ . 

p - t =  voych ; P - ' =  vovch ; f ~ =  l - -  I , H___K , ~ ' 

I * * * * 
cx = --]- (4c"~--a-" § bD; a : p-t--~t--~2; b = --  (P-x + ~lq- e2); 

�9 * * L.BAo, * LAo2 
c : --  (%P-* --8~p-~); % = vcpcvl'I ; e2 vopcvH , 

NOTATION 

T, T s and U, temperature of the gas, of the surrounding medium, and of the metal; L, 
length of the channel; H and h, thickness of the channel and the metal; vo, velocity of the 
gas; c and Cv, heat capacity of the metal and the gas; Xk, X, and • thermal conductivity of 

the stack, the metal, and the gas; ~, a3, Aox, Aoz, A,a, heat-transfer coefficients inside 
the channel to the stack, from the stack to the air, from the gas to the stack, from the gas 
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to the metal and from the stack to the metal; p, u density of the gas and the metal; and ax 
and aa, thermal diffusivities of the stack and the metal. 
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